213. Rearrangement of Derivatives of 1,3-Dithian-5-amine into Bicyclic 2-Thiazolidines. Crystal Structures of *cis*- and *trans*-1-(2-Aryl-1,3-dithian-5-yl)-2-thioureas and *cis*- and *trans*-5-Aryl-3-imino-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles

by Janos Borgulya, John J. Daly, Peter Schönholzer and Karl Bernauer*

Pharmaceutical Research Department and Central Research Units, F. Hoffmann-La Roche & Co., Ltd., CH-4002 Basle

(2.II.84)

Summary

Under conditions normally applied to transform thioureas into the corresponding carbodiimides, cis- and trans-1-(2-aryl-1,3-dithian-5-yl)-2-thioureas 7 and 8 undergo a rearrangement to 5-aryl-3-imino-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles 9/10 with cis- and trans-fused rings, respectively. The structures of these novel heterocycles were established by X-ray analysis of compounds 9a, 9d, and 10d. The cis-fused compounds 9 are the thermodynamically more stable ones. The stereochemical outcome of the rearrangement depends on the carbenium ion stabilizing capability of the aryl moiety and on the reagent system applied. With Ar = Ph, p-Cl-Ph, p-O₂N-Ph, the reaction can be directed to deliver mainly either the *cis*-thiazolothiazoles 9 or the *trans*thiazolothiazoles 10. With Ar = 5-methyl-4-imidazolyl or p-Me₂N-Ph, formation of the cis-thiazolothiazoles (9a and 9b, resp.) is strongly favored independently of the reaction conditions. In contrast to its 2-aryl analogs, (1,3-dithian-5-yl)-2-thiourea 7g can be transformed into the carbodiimide 11. Under rigorous conditions, 11 also undergoes rearrangement to the corresponding thiazolothiazole 9g. Mechanisms explaining the above findings are discussed. Reaction of trans-2-phenyl-1,3-dithian-5-amine 6d with phosgene or trichloromethyl chloroformate gives the 5-phenyl-7,7a-dihydro-1H, 3H, 5H-thiazolo[3,4-c]-thiazol-3-ones 12 and 13, whereas the amine 5g lacking an aryl substituent forms the stable isocyanate 14. Compound 14 is transformed into the corresponding thiazolothiazolone 15 by refluxing in diglyme. Syntheses are described for the 1,3-dithian-5-amines 5/6 and the thioureas 7/8 derived therefrom. The relative configuration of 7d and 8d was determined by X-ray analysis. NMR data then allowed to assign the configurations of all compounds of types 7 and 8.

1. Introduction. – In the course of a synthetic programme aiming at histamine H_2 receptor blockers, we prepared the thiourea 7a with the intention to transform it into the corresponding diimide. Upon treatment of 7a with lead oxide a compound 9a of the expected empirical formula was obtained, but it was immediately evident from its IR spectrum that a diimide grouping was not present in the product. The ¹H-NMR

spectrum showed that the 1,3-dithiane symmetry was lost and pointed to a structure of type **B** (see Scheme 1). This hypothetical structure was confirmed by an X-ray analysis (cf. Section 7), which at the same time established the configuration of 9a, *i.e. cis*-fused rings, 'exo'-position of the imidazo substituent and (Z)-arrangement at the (C=N)-bond. Apparently, 9a is formed by a rearrangement in which one of the S-atoms of the 1,3-dithiane ring is captured by the strongly electrophilic β -C-atom of the side chain (either in a carbodiimide grouping or an equivalent precursor thereof), leading to the zwitterionic species A. Ring closure, connecting N(α) and C(2), affords the thiazolo[3,4-c]thiazole skeleton (Scheme 1).

Starting from these preliminary results and ideas, we embarked on a more detailed investigation mainly concerned with scope, mechanism, and stereochemistry of this novel type of rearrangement reaction. Variation of the substituent R in position 2 of the educts 7 and 8 (Scheme 2), especially with respect to its electron-donating power, appeared to be of greatest importance. Although the electron-withdrawing power of $C(\beta)$ could also be an objective for more thorough investigations, we restricted our experimental work to simple 1,3-dithiane-5-carbamic acid derivatives: the diimides, the isocyanates, and their respective precursors.

2. Synthesis and Relative Configuration of 1,3-Dithian-5-amines and 1-(1,3-Dithian-5-yl)-2-thioureas. – The 1,3-dithian-5-amines of types 5/6 can be synthesized by condensation of aldehydes with 2-amino-1,3-propanedithiol (3; see Scheme 2). Since 3

is very quickly dehydrogenated to 1,2-dithiolan-4-amine, it cannot be isolated in a pure form. It can, however, be generated from its S,S'-dibenzyl derivative 1 and further reacted as a crude product. This methodology turned out to be unsatisfactory in experiments on a larger scale.

The N-Boc-derivative 4 of 3 is a stable compound, easily available, and gives with aldehydes under acid or Lewis-acid catalysis directly the 1,3-dithian-5-amines $5/6^{1}$). Compounds 5 and 6 were isolated partly as pure stereoisomers, partly as mixtures 5/6of cis- and trans-compounds (Scheme 2). The 1,3-dithian-5-amine (5g) is described in [1]. The amines 5/6 were transformed into N-methylthioureas 7/8 by reaction with methyl isothiocyanate. If necessary, mixtures of stereoisomeric thioureas 7/8 can be separated by chromatography. The relative configuration of compounds 7d and 8d has been established by X-ray analysis (cf. Section 7). Based on those relay structures, the relative configurations of all other 1,3-dithianes 7 and 8 were derived from ¹H-NMR data (Table 1), especially from the pattern and chemical shift of the H-C(5) signal.

R	Compound	H-C(2)	H-C(5)	$W_{\gamma_2}^{b}$) [Hz]
5-Methyl-4-imidazolyl	7a	5.39	4,59	15
	8a	5.38	4.45	24
<i>p</i> -Me ₂ N-Ph	7b	5.25	4.63	16
_	8b	5.30	4.43	24
<i>p</i> -MeO-Ph	7c	5.36	4.69	13
	8c	5.38	4.47	23
Ph	7d ^a)	5.48	4.73	13
	8d ^a)	5.48	4.56	24
pCl-Ph	7e	5.50	4.74	17
	8e	5.48	4.48	26
p-O ₂ N-Ph	7f	5.69	4.78	17
	8f	5.68	4.56	24
Н	7g		4.5	24

Fable 1.	¹ H-NMR-Data	$((D_6)DMSO)$	of the	Thioureas 7	and 8
----------	-------------------------	---------------	--------	-------------	-------

D) For H-C(5).

3. Transformation of 1-(1,3-Dithian-5-yl)-2-thioureas into 3-Imino-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles. - The first observed rearrangement of this type $(7a \rightarrow 9a)$ was induced by lead oxide in boiling CHCl₁ [2] (Method a). Since that method turned out not to be generally applicable, we tried other reagents which have been described in the literature to transform thioureas into the corresponding carbodiimides (cf. [2]). Three systems were found to be useful: $PPh_3/CCl_4/Et_3N/CH_2Cl_2$ [3] (Method b), COCl₂/THF-toluene followed by Et₃N [4] (Method c) and 2-chloro-1-methylpyridinium halogenides/Et₃N/MeCN [5] (Method d). All 2-aryl compounds gave directly the 3-imino-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles; intermediates, e.g. carbodiimides, could not be observed by TLC. The simple 1-(1,3-dithian-5-yl)-2-thiourea 7g, however, forms the stable carbodiimide 11, but that compound also rearranges to a thiazolothiazole (9g), though under more rigorous conditions (120° in DMF).

¹) In some cases, N-(tert-butyl)-1,3-dithian-5-amines are formed as sideproducts.

Entry	R	Educt	Method ^a)	Products					
				Isolated yield [%]	10	Crude yield [%]	Composition of crude product [%] ^b)		
				,					
1	5-Methyl-4-	7a	а	65.8					
	imidazolyl	7a ^c)	d			36	ca. 100		
2		8a	а	69.6		94			
3		8a	d			72	ca. 100		
4	p-Me ₂ N-Ph	7b	b			84.5	ca, 100		
5	F - 2	7b	d	90.1		ca. 100	ca. 100		
6		7b	d			98	ca. 100		
7		8b	b			81	ca. 100		
8		8b	d	91		ca. 100	ca. 100		
9		8b	d			97	ca. 100		
10	p-MeO-Ph	7c	d			98	95	5	
11		8c	d	51.5	37.6				
12		8c	d			74	40	60	
13	Ph	7d	Ь	61.7	12.6				
14		7d	Ь			ca. 100	75	25	
15		7d	d			ca. 100	34	66	
16		8d	b	7.6	72.2				
17		8d	b			ca. 100	10	90 ^d)	
18		8d	d			74	10	90	
19	p-Cl-Ph	7e	с	74.7					
20	1	8e	d	5.1	76.3	94			
21		8e	d			72	10	90	
22	p-O2N-Ph	7f	d	23.7	56.5				
23	r - 2- + • •	7f	d		210	96.2	28	72	
24		8f	d			78.9	5	95	

 Table 2. Rearrangement of cis- and trans-1-(2-Aryl-1,3-dithian-5-yl)-2-thioureas 7 and 8 into cis- and trans-Fused

 3-Imino-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles 9 and 10, respectively

^a) Cf. Section 3.

^b) Estimated by ¹H-NMR.

^c) Method d transforms 7a into a mixture of 9a and an analog bearing a 2-pyridyl substituent at one of the imidazole N-atoms.

d) Estimated by TLC.

The results of the transformation $7/8 \rightarrow 9/10$ are compiled in *Table 2*. It is obvious that the stereochemical outcome of the rearrangement depends on the substituent R and the technique applied (*cf. Section 5*). Structures **9a**, **9d**, and **10d**²) were elucidated by X-ray analysis (*Section 7*). The structure of the other compounds could then be deduced by 'H-NMR comparison with the mentioned relay compounds. Typically, the signal of H-C(5) is found at 6.5 ppm for *cis*-fused compounds and at 5.5 ppm for *trans*-fused compounds (*Table 3*).

1830

²) In **10d** the two rings are *trans*-fused. In the corresponding structure with *cis*-fused rings, the substituent R would be in an *'endo'*-position and give rise to severe steric interference (collision with the imino group).

	а	b	c	d	e	f
9 (cis)	6.44 ^a)	6.50	6.62	6.51 ^a)	6.67	6.68
10 (trans)		5.57		5.51°)	5.57	5.64

Table 3. $\delta_{H-C(5)}$ Values (CDCl₃) of cis- and trans-Fused 5-Aryl-7,7a-dihydro-3-(methylimino)-1H,3H,5H-thiazolc[3,4-c]thiazoles

4. Isomerization of the 1-(2-Aryl-1,3-dithian-5-yl)-2-thioureas and of the 5-Aryl-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles. — To create the prerequisites for a better understanding of the steric course and the mechanism of the rearrangement reaction $7/8 \rightarrow 9/10$ we studied the equilibrations $7 \neq 8$ and $9 \neq 10$ under base and acid/ base catalysis. Et₃N, the base involved in the rearrangement according to *Methods b, c,* and *d,* is not strong enough to equilibrate the compounds 7 and 8³), with the exception of the nitrophenyl compounds 7f and 8f (*Method d* can be modified by using Na₂CO₃ instead of Et₃N to avoid equilibration also in this case). A 7:3 ratio of 7f and 8f results after equilibration with Et₃N/MeCN starting from the one or the other side. NaOMe in boiling THF is needed to equilibrate the phenyl compounds 7d and 8d; again a ratio of *ca.* 7:3 is observed, *i.e.* in both cases the *cis*-compound is the thermodynamically more stable one.

The equilibration $9 \rightleftharpoons 10$ also needs a strong base. It can be carried out with NaOMe in DMSO. With 9d/10d and 9e/10e, the equilibration could be clearly shown to be, as expected, far on the side of the *cis*-fused compounds 9. Compound 9f forms with that base/solvent system only traces of 10f, even if kept at 80° for 4 days. Under the same conditions, the *trans*-fused 10f was isomerized to give a ratio 6.5:3.5 of $10f/9f^4$). Similar results were obtained with sodium 2-methyl-2-butoxide as base. Et₃N·HCl does not equilibrate compounds 9 and 10.

5. Steric Course and Mechanism of the Rearrangement. – The results of Section 4 show that under conditions, which correspond, with respect to possible base or acid/ base catalysis, to those of the rearrangement, isomerization of educts $(7 \rightleftharpoons 8)$ and products $(9 \rightleftharpoons 10)$ can be excluded. Under this premise, from the data of Table 2 the following can be deduced: A. If R is a substituent which stabilizes carbenium ions only poorly, the rearrangement is stereoselective with Methods b or c. That is, cis-educts 7 give mainly products 9 with cis-fused rings; trans-educts 8 give mainly products 10 with trans-fused rings (Entries 13,14,16,17,19-21). These results are equivalent to preferential retention of the configuration at C(2), as will become evident below.

B. If R stabilizes carbenium ions well, formation of the cis-thiazolothiazoles 9 is favored, independent from the method used (Entries 1-9; cf. Entries $10-12^{5}$)).

C. Method d leads in case of poor carbenium ion stabilizing R from both cis-educts 7 and trans-educts 8 mainly to trans-products 10^6) (Entries 15,18,20,21-24; cf. Entries $10-12^5$)).

³) Nor are these compounds equilibrated by $Et_3N \cdot HCl$.

⁴) Most probably, also in this case the *cis*-fused compound is the thermodynamically more stable one. For some reason, the equilibration seems to be very slow with **10f**.

⁵) The *p*-methoxyphenyl compounds 7c and 8c represent borderline cases.

⁶) This means inversion at C(2) in the case of the *cis*-compounds.

The statements A and B can be explained by a mechanism as sketched in Scheme 3 for a trans-1,3-dithiane 8: with Methods a, b, and c in a first step the thioureido residue is transformed into a carbodiimide grouping $(8 \rightarrow I)$, which because of its high electrophilic power, reacts immediately with one of the ring S-atoms $(I \rightarrow II)$. The polar parts of II recombine under rotation, forming a bond between N(α) and C(2). The configuration at C(2) is retained by a close steric interaction of the cationic and the anionic part of II⁷)⁸), if the positive charge is not too much spread (II \rightarrow II $\alpha \rightarrow$ IV). In this case, the rearrangement is predominantly kinetically controlled (transition state similar to II α). On the other hand, with a strongly resonance-stabilized cationic part of II, bond recombination is a relatively slow process, the configuration at C(2) is lost (II \rightarrow III), and since III is thermodynamically more favorable than II α , mainly or exclusively the *cis*-fused product V is formed (*via* a transition state similar to III).

⁷) As known for contact ion pairs, *e.g.* in the *Stevens* rearrangement.

⁸) The stereochemical outcome could be explained likewise by the assumption of strong double-bond character of the C(2),S-bond in the zwitterion and retention of the *cis*- or *trans*-arrangement, respectively, of R and CH_2 on this bond.

A satisfactory hypothesis for the preferential formation of *trans*-thiazolothiazoles **10** from *cis*-1,3-dithianes **7** with *Method d* (if **R** is a substituent which poorly stabilizes carbenium ions; see statement c) has to define *i*) a mechanism, which allows transition from the *cis*- into the *trans*-1,3-dithiane series, and *ii*) a reaction step, which favors **10** over **9**. The pathways outlined in *Scheme 4* fulfill these requirements: In a first step, the thioureas **7** and **8** react with 2-chloro-1-methylpyridinium ion to the isothiourea derivatives **VI** and **VII**, respectively. The lifetime of these may be long enough to allow formation of the intermediates **VIII** and **IX** via the conformers **VI'** and **VII'**, respectively; **VIII** and **IX** can equilibrate because of their weakened 1,2-bond. Here, severe steric interference between **R** and the substituents at $C(\beta)$ (MeS and PyS) in the *cis*-intermediate **VIII** strongly favors the *trans*-intermediate **IX**. In the latter, S(1) can further approach $C(\beta)$ more easily and thereby facilitate the elimination of thiopyridone. Accordingly, a transition state similar to **IX** should be lower in energy than one similar to **VIII**. The route via **IX** and **XI**, running into **II** (*cf. Scheme 3*) is therefore the predominant one.

The fact that the imidazolyl- and p-(dimethylamino)phenyl-substituted 1,3-dithianes 7a and 7b, respectively, of the *cis*-series with the same method form *cis*-thiazolothiazoles is congruent with the intermediacy of II (which in these cases equilibrates with III; *cf. Scheme 3*). The *trans*-1,3-dithianes 8 under the conditions of *Method d* rearrange distinctly (*ca.* 5-6 times) faster than their *cis*-isomers. This may be explained by the assumption that starting from VI, the rate-limiting step is one before IX.

6. Reaction of 1,3-Dithian-5-amines with Phosgene or Trichloromethyl Chloroformate. – Considering its comparable electrophilicity an isocyanate substituent (or its precursor) in position 5 of a 1,3-dithiane should trigger a rearrangement to the corresponding thiazolo[3,4-c]thiazole skeleton about as easily as the carbodiimide grouping (or its precursor). This assumption was confirmed by experiments with the 1,3-dithian-5-amines 6d and 5g (Scheme 5). Compound 6d reacts e.g. with trichloromethyl chloro-

formate and Et₃N in MeCN already at room temperature and delivers a 6:1 mixture of the *cis*- and *trans*-thiazolothiazolones 12 and 13. The ratio 12/13 can be directed by the reaction conditions. For example, the hydrochloride of 6d affords with phosgene in boiling toluene 62% of *trans*-product 13 and only 13.7% *cis*-product 12. The configuration of 12 and 13 is deduced from the ¹H-NMR-spectra (chemical shift of H-C(5)). The simple 1,3-dithian-5-amine 5g forms with trichloromethyl chloroformate/Et₃N/ MeCN at 20° an isocyanate 14, which in boiling diglyme rearranges to the thiazolothia-zolone 15.

7. X-Ray Structure Analyses of the 1-Methyl-3-(2-phenyl-1,3-dithian-5-yl)-2-thioureas 7d and 8d and of the 5-Aryl-3-(methylimino)-7,7a-dihydro-1H,3H,5H-thiazolo[3,4-c]thiazoles 9a, 9d, and 10d. – The crystal and molecular structures of com-

Fig.1. Stereoscopic drawing of 7d

Fig. 2. Stereoscopic drawing of 8d

Fig.3. Stereoscopic drawing of 9a

Fig. 4. Stereoscopic drawing of 9d

Fig. 5. Stereoscopic drawing of 10d

pounds **7d**, **8d**, **9a**, **9d**, and **10d** have been determined by single-crystal X-ray structure analyses. All calculations were carried out with the SHELXTL [6] package of the R3m system. Stereoscopic drawings of all molecules are shown in Fig. 1–5⁹).

The skillful assistance of *R. Roos* and *J. Wuhrlin* is acknowledged. The authors thank also Drs *W. Arnold*, *L. Chopard*, *A. Dirscherl*, *G. Englert*, *M. Grosjean*, *W. Vetter* and Mr. *W. Meister* for the spectroscopic determinations and microanalyses.

Experimental Part

General. All org. solvents used were dried over molecular sieves. Before evaporation, org. solutions were dried over Na₂SO₄. Crystalline substances in all cases were dried *i.v.* (<0.1 Torr). Silica gel F_{254} (Merck) plates were used for TLC. Column chromatography was carried out by using silica gel 60 (0.063–0.200 mm; Merck). Melting points (m.p.) were determined on a Büchi-SMP-20 apparatus and are uncorrected. IR spectra (cm⁻¹) were obtained on a Beckman-IR-9 instrument. ¹H-NMR spectra were recorded on a Varian-A-60-D and EM-360 (60 MHz), Bruker-Spectrospin-WP-80-CW (80 MHz), HX-90/15 (90 MHz), HX-270 (270 MHz), and WM-400 (400 MHz) spectrometer. Chemical shifts are given in ppm with TMS as internal standard (= 0 ppm); s = singulet; d = doublet; t = triplet; q = quadruplet; m = multiplet; br. = broad. Mass spectra were recorded on a MS-9 (ABI Manchester) spectrometer. Signals in m/z (rel. intensities); signals < 5% mentioned only if of significance.

1. tert-Butyl N-{2-Benzylthio-1-[(benzylthio)methyl]ethyl]carbamate (2). To the solution of 1·HCl [7] (85.7 g, 0.25 mol) in DMF (750 ml), Et₃N (26.7 g, 0.26 mol) and then di(tert-butyl) dicarbonate (60.5 g, 0.28 mol) were added. The mixture was stirred at r.t. for 18 h. After evaporation of DMF *i.v.*, the residue was treated with EtOAc (500 ml) and H₂O (100 ml). The resulting org. layer was washed with H₂O and brine and then evaporated. The crude 2 was dissolved in petroleum ether (30–45°; 500 ml) and Et₂O (60 ml), shortly refluxed with active carbon and, after filtration, kept at 0° for crystallization: 93.9 g (92.3%) of colorless 2, m.p. 61-63°. IR (KBr): 3337, 1684, 1650, 1601, 1535, 1169, 769, 756, 717. ¹H-NMR (80 MHz, (D₆)DMSO): 1.43 (*s*, (CH₃)₃C); 2.53 (*m*, (SCH₂)₂CH); 3.73 (*s*, 2 CH₂C₆H₃); 3.73 (*m*, H–C(1)); 6.85 (*d*, J = 8.5, HN); 7.20–7.44 (*m*, C₆H₃). MS: 312 (3, $M^+ - C_6H_5CH_2$), 256 (10), 238 (5), 166 (21), 149 (5), 91 (100), 57 (18), 41 (9). Anal. calc. for C₂₂H₂₉NO₂S₂ (403.60): C 65.47, H 7.24, N 3.47, S 15.89; found: C 65.44, H 7.04, N 3.39, S 16.03.

2. tert-Butyl N-[2-Mercapto-1-(mercaptomethyl)ethyl]carbamate (4). A solution of 2 (93 g, 0.33 mol) in toluene (1.1 l) was dropped to a stirred solution of Na (16.1 g, 0.7 mol) in NH₃ at -70° . After addition of half of 2, the color of the mixture turned from dark-blue to brown-yellow and, therefore, further Na (10 g, 0.43 mol) was added. Then, the rest of 2 was dropped in. After 30 min of further stirring, NH₄Cl (20.0 g, 0.37 mol) was added and the NH₃ evaporated over night. The residue was cooled to 0° and acidified with 10%. KHSO₄/H₂O (1950 ml). The toluene layer was washed with H₂O and evaporated *i.v.* : 60.6 g of crude 4 containing *ca.* 20% of bibenzyl (the preparation is very oxidable and has to be kept under N₂). Crude 4 (1.04 g) was chromatographed over silica gel (20 g) with CH₂Cl₂. By bulb-to-bulb destillation *i.v.*, bibenzyl (160 mg; b.p. 100–110°/0.1 Torr) and the viscous oily 4 (791 mg; b.p. 120–125°/0.02 Torr) were isolated. IR (film): 3334, 2977, 2931, 1692, 1510, 1168. ¹H-NMR (60 MHz, CDCl₃): 1.36 (*t. J* = 9, 2HS); 1.48 (*s.* (CH₃)₃C); 2.63–3.07 (*m.* 2H₂C); 3.66–4.17 (*m.*, 1HC); 4.9 (br. *m.*, 1HN). Anal. calc. for C₈H₁₇NO₂S₂ (223.35): C 43.02, H 7.67, N 6.27, S 28.71; found: C 43.06, H 7.77, N 6.48, S 28.45.

3. 2-(5-Methylimidazol-4-yl)-1,3-dithian-5-amine (5a/6a). A solution of 4 (11.17 g, 50 mmol) and 5-methylimidazole-4-carboxaldehyde [8] (5.51 g, 50 mmol) in CHCl₃ (470 ml) and DMF (90 ml) was treated with dry HCl (gas) for 75 min at 50° and 90 min under reflux. After cooling, the mixture was first concentrated and then, after addition of toluene (200 ml), fully evaporated. The residue was suspended in CH₂Cl₂ (500 ml) and, under vigorous stirring, saturated with anh. NH₃. The precipitate was filtered and the filtrate evaporated to dryness: crude 5a/6a (10.5 g, 97.5%).

4. 2-[p-(Dimethylamino)phenyl]-1,3-dithian-5-amine (5b/6b). BF₃·Et₂O (66.2 g, 0.47 mol) in CH₂Cl₂ (50 ml) was dropped into a solution of *p*-(dimethylamino)benzaldehyde (31.6 g, 0.21 mol) and 4 (47.4 g, 0.21 mol) in CH₂Cl₂ (650 ml) within 25 min. The mixture was refluxed for 5 h. After cooling to r.t., 3N NaOH

⁹) Coordinates and thermal parameters for all compounds have been deposited with the *Crystallographic Data Centre*, Cambridge University, University Chemical Lab, Cambridge CB2 1EW, England.

(250 ml) was added dropewise. The org. phase was washed with brine and evaporated. Then, 3N HCl (300 ml) was added to the residue and the mixture stirred overnight. The acidic solution was first washed with CH₂Cl₂ and then basified with 9N NaOH (130 ml). The resulting precipitate was dissolved in CH₂Cl₂ and washed with brine. After evaporation, the crude product was recrystallized from CH₂Cl₂/Et₂O: 39.2 g (72.7%) of **5b/6b**, m.p. 129–135°. IR (KBr): 3345, 3325, 3247, 3156, 2802, 1611, 1579, 1562, 1523, 817. MS: 254 (36, M^+), 205 (17), 175 (13), 165 (96), 164 (67), 148 (100), 147 (93), 134 (17), 45 (13). Anal. calc. for C₁₂H₁₈N₂S₂ (254.41): C 56.65, H 7.13, N 11.01, S 25.20; found: C 56.31, H 7.15, N 10.95, S 25.25.

5. 2-(p-Methoxyphenyl)-1,3-dithian-5-amine (5c/6c). To a solution of 4 (29.0 g, 0.13 mol) and p-anisaldehyde (18.6 g, 0.137 mol) in CHCl₃ (325 ml) was added within 20 min under stirring BF₃·Et₂O (36.9 g, 0.26 mol) in CHCl₃ (40 ml). During the reaction, under evolution of 2-methyl-1-propene and CO₂, the tetrafluoroborates of 5c/6c precipitated as a white solid. After 90 min refluxing, the mixture was cooled to r.t., the precipitate was filtered off and washed with CHCl₃. The dried salt was suspended in H₂O (150 ml). After adjusting to pH 10 with Na₂CO₃ solution, the mixture was extracted with CH₂Cl₂. The org. layer was evaporated *i.v.* to give a crude mixture 5c/6c (28.2 g, 89.9%), which was used in the next step without further purification.

6. 2-Phenyl-1,3-dithian-5-amine (5d/6d). Compound 4 (36.7 g, 164.5 mmol) and benzaldehyde (18.4 g, 173.4 mmol) were reacted as described under 5 to give 29.3 g (84.3%) of crude 5d/6d.

7. 2-(p-Chlorophenyl)-1,3-dithiane-5-amine (5e/6e). Compound 4 (23.6 g, 105.7 mmol) and p-chlorobenzaldehyde (14.9 g, 106 mmol) were reacted as described under 5 to give 20.9 g (84.1%) of crude 5e/6e.

8. 2-(p-Nitrophenyl)-1,3-dithian-5-amine (5f/6f), N-(tert-Butyl)-2-(p-nitrophenyl)-1,3-dithian-5-amine, and 2-(tert-Butylthio)-1-[(tert-butylthio)methyl]ethylamine Hydrochloride. To a solution of 4 (25.8 g, 115.5 mmol) and p-nitrobenzaldehyde (18.3 g, 121 mmol) in CHCl₃ (580 ml) was added within 25 min BF₃·Et₂O (32.8 g, 231 mmol) in CHCl₃ (35 ml). During the reaction, under evolution of 2-methyl-1-propene and CO₂, a sticky tetrafluoroborate salt precipitated. After 60 min at r.t. and 2 h refluxing, the mixture was cooled to r.t. H₂O (200 ml) was added and then dropewise sat. Na₂CO₃ to reach pH *ca.* 9. The org. phase was washed with brine and evaporated. The residue (41.6 g) was chromatographed over silica gel (830 g) with CH₂Cl₂/MeOH 95:5 to give the title compounds in the following sequence: 13.2 g (32.8%) of cis- and trans-N-(tert-Butyl)-2-(p-nitrophenyl)-1,3-dithian-5-amine, m.p. 82-84° (from MeCN). IR (KBr): 3269, 1597, 1523, 1490, 1346, 817. ¹H-NMR (80 MHz, CDCl₃): 2 s at 5.64 and 5.78 (H–C(2)) in a ratio of 2:3. MS: 312 (9, M^+), 255 (100), 209 (88), 177 (9), 161 (9), 130 (8), 105 (38), 104 (46), 73 (12), 57 (61), 45 (6), 41 (17), 23 (17). Anal. calc. for C₁₄H₂₀N₂O₂S₂ (312.45): C 53.82, H 6.45, N 8.97, S 20.52; found: C 53.74, H 6.55, N 8.97, S 20.42.

2-(t-Butylthio)-1-[(tert-butylthio)methyl]ethylamine, isolated as hydrochloride, 2.9 g (18.5%), m.p. 131-133° (from Et₂O). IR (KBr): 3185–2759 (br.), 1580, 1473, 1369, 1159. ¹H-NMR (80 MHz, CDCl₃): 1.36 (s, 2 (CH₃)₃C); 2.90–3.22 (m, 2 CH₂); 3.36 (br. m, H–C(1)). MS: 236 (100, M^+), 219 (17), 163 (18), 132 (35), 122 (8), 76 (43), 61 (21), 57 (6), 30 (7). Anal. calc. for C₁₁H₂₅NS₂·HCl (271.91): C 48.59, H 9.27, Cl 13.03, N 5.15; found: C 48.65, H 9.46, Cl 12.72, N 5.18.

5/**6I**: 9.1 g (30.7%), m.p. 142-144° (from CH_2Cl_2/Et_2O). 1R (KBr): 3365, 1604, 1595, 1579, 1518, 1492, 1348, 834. ¹H-NMR (90 MHz, CDCl₃): 2 *s* at 5.11 and 5.27 (H–C(2)) in a ratio of *ca*. 9:1. MS: 256 (9, *M*⁺), 239 (23), 224 (14), 209 (11), 182 (38), 166 (11), 151 (7), 120 (6), 77 (8), 43 (100). Anal. calc. for $C_{10}H_{12}N_2O_2S_2$ (256.34): C 46.86, H 4.72, N 10.93, S 25.01; found: C 46.60, H 4.95, N 10.83, S 24.98.

9. *l-Methyl-3-f* cis-2-(5-methylimidazol-4-yl)-1,3-dithian-5-yl]-2-thiourea (**7a**) and *l-Methyl-3-f* trans-2-(5-methylimidazol-4-yl)-1,3-dithian-5-yl]-2-thiourea (**8a**). Crude **5a/6a** (11.5 g, 53.4 mmot) and methyl isothiocyanate (3.95 g, 54 mmot) were refluxed in EtOH (100 ml) for 10 h. After evaporation *i.v.*, the mixture was separated by chromatography over silica gel (500 g) with i-PrOH. The *cis*-product **7a** was crystallized from i-PrOH/Et₂O: 3.3 g (21.4%), m.p. 228-229°. IR (KBr): 3364, 3322, 3120, 1603, 1541, 1501. ¹H-NMR (80 MHz, (D₆)DMSO): 2.23 (*s*, CH₃C); 2.88 (*d*, *J* = 4.5, CH₃N); 2.90 (*dd*, $J_{gem} = 14$, $J_{vic} = 4$, H–C(4) resp. H–C(6)); 3.38 (*dd*, $J_{gem} = 14$, $J_{vic} = 2$, H–C(4) resp. H–C(5)); 8.16 (br. *d*, *J* = 4.5, H/NCH₃); 11.83 (br. *s*, HN (imidazole)). MS: 257 (18, $M^+ - NH_2 - CH_3$), 254 (5, $M^+ - H_2$ S), 216 (15), 213 (24), 199 (16), 181 (20), 165 (29), 126 (82), 125 (100), 115 (93), 73 (55), 44 (29), 26 (35). Anal. calc. for C₁₀H₁₆N₄S₃ (288.45): C 41.64, H 5.59, N 19.42; found: C 41.68, H 5.78, N 19.32.

The *trans*-product **8a** was crystallized from EtOH: 3.1 g (20.1%), m.p. 235-237°. IR (KBr): 3365, 3260, 1604, 1560, 1502. ¹H-NMR (80 MHz, (D₆)DMSO): 2.25 (*s*, CH₃C); 2.84 (*d*, J = 4.5, CH₃N); 2.74-3.24 (*m*, 2 CH₂); 4.45 (*m*, $\Sigma J \approx 36$, H–C(5)); 5.38 (*s*, H–C(2)); 7.33–7.45 (*m*, HNCH₃, HN–C(5)); 7.43 (*s*, H–C=N); 11.84 (br. *m*, HN (imidazole)). MS: 254 (6, $M^+ - H_2$ S), 213 (22), 125 (40), 115 (100), 104 (16), 74 (25), 45 (30), 23 (24). Anal. calc. for C₁₀H₁₆N₄S₃ (288.45): C 41.64, H 5.59, N 19.42; found: C 41.75, H 5.76, N 19.32.

10. $1-\{cis-2-[(p-Dimethylamino)phenyl]-1,3-dithian-5-yl\}-3-methyl-2-thiourea (7b) and <math>I-\{trans-2-[(p-Dimethylamino)phenyl]-1,3-dithian-5-yl\}-3-methyl-2-thiourea (8b). A mixture of 5b/6b (39.0 g, 0.15 mol), dry CHCl₃ (200 ml), and methyl isothiocyanate (11.9 g, 0.16 mol) was refluxed for 4 h. During this period, 8b precipitated in crystalline form and was recrystallized from CHCl₃: 11.3 g (22.4%), m.p. 212–214°. Chromatography (see below) gave an additional crop of 1.2 g (2.4%) 8b, of the same m.p. 1R (KBr): 1613, 1559, 1522, 812. ¹H-NMR (90 MHz, (D₆)DMSO): 2.33–2.72 (m, 2 CH₂); 2.83 (d, <math>J = 5$, CH₃NH); 2.90 (s, (CH₃)₂N); 4.43 (br. m, $\Sigma J \approx 36$, H-C(5)); 5.30 (s, H-C(2)); 6.56–6.80 (m (AA'), 2 arom. H); 7.16–7.40 (m, (BB'), 2 arom. H); 7.40–7.85 (m, HN-C(5), HNCH₃). MS: 327 (15, M^+), 296 (37), 255 (35), 252 (29), 205 (11), 165 (93), 164 (100), 148 (45), 147 (34), 134 (43), 115 (36), 73 (29), 45 (19), 28 (25). Anal. calc. for C₁₄H₂₁N₃S₃ (327.52): C 51.34, H 6.46, N 12.68, S 29.37; found: C 51.12, H 6.47, N 12.65, S 29.43.

The *cis*-compound **7b** was obtained after chromatography of the mother liquor (39 g) over silica gel (1300 g) with CH₂Cl₂/MeOH 95:5: 31.5 g (62.4%), m.p. 187–189° (from CH₂Cl₂/Et₂O). IR (KBr): 1618, 1553, 1513, 809, 768. ¹H-NMR (90 MHz, CDCl₃): 2.94 (*s*, (CH₃)₂N); 3.03 (*d*, J = 5, CH₃NH); 3.07 (*dd*, $J_{gem} = 13$, $J_{ax,eq} = 4$, H_{ax} -C(4), H_{ax} -C(6)); 3.33 (*dd*, $J_{gem} = 13$, $J_{eq,eq} = 2.5$, H_{eq} -C(4), H_{eq} -C(6)); 4.94 (*m*. $\Sigma J \approx 26$, H-C(5)); 5.08 (*s*, H-C(2)); 6.34 (br. *m*, HNCH₃); 7.03 (*d*, J = 9, HN-C(5)); 6.57–6.78 (*m* (*AA'*), 2 arom. H); 7.23–7.44 (*m* (*BB'*), 2 arom. H). MS: 327 (76, M^+), 296 (17), 252 (25), 165 (100), 164 (95), 148 (28), 134 (89), 115 (92), 73 (17), 57 (26), 45 (10), 28 (29). Anal. calc. for C₁₄H₂₁N₃S₃ (327.52): C 51.34, H 6.46, N 12.83, S 29.37; found: C 51.20, H 6.61, N 12.81, S 29.39.

11. 3-f cis-2-(p-Methoxyphenyl)-1,3-dithian-5-yl]-1-methyl-2-thiourea (**7c**) and 3-f trans-2-(p-Methoxyphenyl)-1,3-dithian-5-yl]-1-methyl-2-thiourea (**8c**). Crude **5c/6c** (28.2 g, 0.117 mol) and methyl isothiocyanate (9 g, 0.123 mol) in MeCN (280 ml) were refluxed for 2 h. Workup and chromatography as described under 9 yielded **7c** (1.1 g, 3.0%), m.p. 191–193° (from CH₂Cl₂) and **8c** (29.3 g, 79.4%), m.p. 214–216° (from MeCN). Data of **7c**: IR (KBr): 3392, 3377, 2841, 1605, 1533, 1508, 1299, 1256, 1240, 1226, 1174, 1024, 811. ¹H-NMR (80 MHz, (D₆)DMSO): 2.91 (d, J = 4.5, CH₃N); 2.96 (dd, $J_{gem} = 14$, $J_{ax,eq} = 4$, H_{ax} -C(4), H_{ax} -C(6)); 3.4 (dd, $J_{gem} = 14$, $J_{eq,eq} = 2.0$, H_{eq} -C(4), H_{eq} -C(6)); 3.79 (s, CH₃O); 4.69 (m, $\Sigma J \approx 27$, H–C(5)); 5.36 (s, H–C(2)); 6.8–7.06 (m (AA'), 2 arom. H); 7.2–7.6 (m (BB'), 2 arom. H); ca. 7.5 (br. m, HN); 8.16 (br. m, HN). MS: 314 (42, M⁺), 239 (7), 191 (10), 162 (20), 129 (68), 121 (37), 115 (100), 91 (37), 73 (19), 57 (62), 45 (25), 41 (15), 28 (13). Anal. calc. for C₁₃H₁₈N₂OS₃ (314.48): C 49.65, H 5.77, N 8.91; found: C 49.65, H 5.82, N 8.87.

Data of **8**c: IR (KBr): 3341, 3227, 1611, 1567, 1514, 1254, 1168, 1024, 849, 825, 754. ¹H-NMR (90 MHz, (D₆)DMSO): 2.83 (d, J = 4.5, CH₃N); 2.74–3.22 (m, 2 CH₂); 3.74 (s,CH₃O); 4.47 ($m, \Sigma J \approx 40$, H_{ax}–C(5)); 5.38 (s, H–C(2)); 6.8–7.04 (m (AA'), 2 arom. H); 7.38–7.7 (m (BB'), 2 arom. H, 2 HN). MS: 314 (17, M^+), 283 (19), 242 (40), 239 (26), 152 (74), 151 (100), 115 (38), 73 (16), 45 (20). Anal. calc. for C₁₃H₁₈N₂OS₃ (314.48): C 49.65, H 5.77, N 8.91, S 30.58; found: C 49.59, H 5.74, N 8.81, S 30.87.

12. *I*-Methyl-3- (cis-2-phenyl-1,3-dithian-5-yl)-2-thiourea (**7d**) and *I*-Methyl-3- (trans-2-phenyl-1,3-dithian-5-yl)-2-thiourea (**8d**). Crude **5d**/**6d** (25.1 g, 118.8 mmol), methyl isothiocyanate (9.55 g, 130.6 mmol), and CHCl₃ (250 ml) were refluxed for 2 h. Workup and chromatography as described under 9 yielded 20.3 g (60.1%) of **7d**, m.p. 132–134° (from CH₂Cl₂/Et₂O) and 6.0 g (17.8%) of **8d**, m.p. 247–249° (from MeCN). Data of **7d**: IR (KBr): 3385, 3220, 1556, 1511, 1498, 1226, 810, 739, 696. ¹H-NMR (80 MHz, (D₆)DMSO): 2.91 (*d*, J = 4.5, CH₃N); 2.98 (*dd*, $J_{gem} = 12$, $J_{ax,eq} = 4$, H_{ax} -C(4), H_{ax} -C(6)); 3.43 (*dd*, $J_{gem} = 14$, $J_{eq,eq} = 2.5$, H_{eq} -C(4), H_{eq} -C(6)); 4.73 (*m*, $\Sigma J \approx 26$, H-C(5)); 5.48 (*s*, H-C(2)); 7.3–7.8 (*m*, 5 arom. H, 1 HN); 8.09–8.43 (*m*, HN). MS: 284 (28, M^+), 253 (12), 250 (6), 209 (22), 194 (13), 179 (5), 162 (15), 153 (7), 135 (14), 129 (47), 122 (63), 121 (78), 115 (45), 106 (20), 91 (48), 73 (53), 57 (29), 45 (50), 43 (100), 41 (24), 30 (24), 28 (18). Anal. calc. for C₁₂H₁₆N₂S₃ (284.45): C 50.67, H 5.67, N 9.85, S 33.81; found: C 50.54, H 5.71, N 9.73, S 33.69.

Data of 8d: IR (KBr): 3340, 3230, 1568, 1515, 1281, 1224, 1169, 810, 698. ¹H-NMR (80 MHz, (D₆)DMSO): 2.86 (d, J = 4.5, CH₃N); 2.93–3.30 (m, 2 CH₂); 4.51 (m, $\Sigma J \approx 40$, H–C(5)); 5.48 (s, H–C(2)); 7.33–7.75 (m, 5 arom. H, HN); 8.34 (br., HN). MS: 284 (28, M^+), 253 (25), 250 (7), 212 (35), 209 (20), 194 (15), 179 (7), 161 (18), 129 (48), 122 (90), 121 (100), 115 (51), 91 (63), 73 (65), 57 (40), 43 (76), 30 (40), 28 (24). Anal. calc. for C₁₂H₁₆N₂S₃ (284.45): C 50.67, H 5.67, N 9.85, S 33.81; found: C 50.71, H 5.85, N 10.00, S 34.12.

13. 1-[cis-2-(p-Chlorophenyl)-1,3-dithian-5-yl]-3-methyl-2-thiourea (7e) and 1-[trans-2-(p-Chlorophenyl)-1,3-dithian-5-yl]-3-methyl-2-thiourea (8e). Crude 5e/6e (17.3 g, 70 mmol) and methyl isothiocyanate (5.66 g, 77 mmol) in MeCN (150 ml) were refluxed for 1 h. The pure thioureas were isolated by fractional crystallization: 11.5 g (51.2%) of 7e, m.p. 153–155° (from CH₂Cl₂), and 3.0 g (13.4%) of 8e, m.p. 264–266° (from MeCN). Data of 7e: IR (KBr): 3360, 3296, 1539, 1509, 1488, 809, 702. ¹H-NMR (80 MHz, (D₆)DMSO): 2.91 (d, J = 4.5, CH₃N); 3.0 (dd, $J_{gem} = 13$, $J_{ax,eq} = 4.5$, H_{ax} -C(4), H_{ax} -C(6)); 3.43 (dd, $J_{gem} = 14$, $J_{eq,eq} = 2.5$, H_{eq} -C(4), H_{eq} -C(6)); 4.74 (m, $\Sigma J \approx 27$, H--C(5)); 5.50 (s, H-C(2)); 7.4-7.76 (m, 4 arom. H, HN); 8.06-8.41 (m, HN).

MS: 318 (43, M^+), 287 (17), 284 (7), 246 (31), 243 (25), 156 (77), 155 (95), 129 (81), 115 (100), 91 (45), 73 (55), 57 (35), 43 (66). Anal. calc. for C₁₂H₁₅ClN₂S₃ (318.90): C 45.20, H 4.74, Cl 11.12, N 8.78, S 30.16; found: C 45.16, H 4.69, Cl 11.23, N 8.75, S 30.34.

Data of **8e**: IR (KBr): 3310, 3246, 1552, 1509, 1486, 822, 801. ¹H-NMR (80 MHz, (D₆)DMSO): 2.85 ($d, J = 4.5, CH_3N$); 2.8–3.2 ($m, 2 CH_2$); 4.25–4.71 ($m, \Sigma J = 38, H-C(5)$); 5.48 (s, H-C(2)); 7.3–7.7 (m, 4 arom. H, HN); 8.13–8.25 (m, HN).

14. 1-Methyl-3-[cis-2-(p-nitrophenyl)-1,3-dithian-5-yl]-2-thiourea (**7f**) and 1-Methyl-3-[trans-2-(p-nitrophenyl)-1,3-dithian-5-yl]-2-thiourea (**8f**). A mixture of **5f/6f** (16.2 g, 63.2 mmol), methyl isocyanate (5.08 g, 69.5 mmol) and CHCl₃ (260 ml) was refluxed for 6 h. Compound **8f** crystallized from the mixture and was recrystallized from CHCl₃: 1.6 g (7.7%), m.p. 213-215°. The first mother liquor was partly evaporated at r.t., whereupon **7f** crystallized: 18.5 g (88.9%), m.p. 203-205°.

Data of 7f: IR (KBr): 3338, 3292, 1604, 1526, 1493, 1349, 861. ¹H-NMR (80 HMz, (D₆)DMSO): 2.93 (d, J = 4.5, CH₃N); 3.08 (dd, $J_{gem} = 14$, $J_{eq,ax} = 4.5$, $H_{ax}-C(4)$, $H_{ax}-(6)$; 3.42 (dd, $J_{gem} = 14$, $J_{eq,eq} = 2$, $H_{eq}-C(4)$, $H_{eq}-C(6)$; 4.78 (m, $\Sigma J \approx 26$, H–C(5)); 5.69 (s, H–C(2)); 7.7 (br. m, HN); 7.7–8.0 (m (AA'), 2 arom. H); 8.0–8.5 (m (BB'), 2 arom. H, HN). MS: 329 (25, M^{+}), 298 (100), 257 (30), 254 (32), 239 (22), 224 (24), 182 (21), 167 (39), 129 (47), 115 (100), 91 (30), 73 (54), 57 (30), 43 (70), 30 (17), 28 (38). Anal. calc. for C₁₂H₁₅N₃O₂S₃ (329.45): C 43.75, H 4.59, S 29.19; found: C 43.34, H 4.77, S 28.81¹⁰).

Data of **8f**: IR (KBr): 1592, 1575, 1504, 1335, 819. ¹H-NMR (80 MHz, (D₆)DMSO): 2.86 (*d*, J = 4.5, CH₃N); 2.96–3.4 (*m*, 2 CH₂); 4.54 (*m*, $\Sigma J \approx 40$, H–C(5)); 5.68 (*s*, H–C(2)); 7.35–7.73 (*m*, 2 HN); 7.3–7.96 (*m* (*AA'*), 2 arom. H); 8.16–8.43 (*m*, (*BB'*), 2 arom. H). MS: 329 (38, M^{+}), 298 (22), 257 (36), 239 (21), 224 (15), 206 (12), 182 (11), 166 (36), 162 (21), 151 (6), 129 (100), 115 (81), 91 (76), 73 (74), 57 (69), 43 (97), 30 (36), 28 (18). Anal. calc. for C₁₂H₁₅N₃O₂S₃ (329.45): C 43.75, H 4.59, N 12.75, S 29.19; found: C 43.42, H 4.64, N 12.68, S 29.00.

15. I-(1,3-Dithian-5-yl)-3-methyl-2-thiourea (7g). The solution of 5g [1] (1.35 g, 10 mmol) and methyl isothiocyanate (731 mg, 10.5 mmol) in MeCN (30 ml) was refluxed for 2 h. After evaporation of the solvent, the crude product was twice recrystallized from EtOAc: 1.8 g (86.4%) of 7g, m.p. 139–141°. IR (KBr): 3332, 3190, 1567, 1514. ¹H-NMR (80 MHz, (D₆)DMSO): 2.56–3.18 (*m*, H₂C(4), H₂C(6)); 2.84 (*d*, J = 4.5, CH₃N); 3.65–3.85 (2*d* (*AB*), J = 15, H₂C(2)); 4.49 (*m*, $\Sigma J \approx 32$, H–C(5)); 7.44 (*d*, J = 8, HN–C(5)); 7.75 (*ca. q*, HNCH₃). MS: 208 (58, M^+), 129 (100), 115 (54), 103 (23), 91 (84), 74 (37), 57 (27), 28 (47). Anal. calc. for C₆H₁₂N₂S₃ (208.36): C 34.59, H 5.81, N 13.45, S 46.16; found: C 34.78, H 5.85, N 13.20, S 45.80.

16. 7,7αα-Dihydro-5α-(5-methylimidazol-4-yl)-3-(methylimino)-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9a). a) From 7a. The mixture of 7a (5.0 g, 17.3 mmol), MeCN (100 ml), DMF (40 ml), and lead oxide (3.87 g, 17.3 mmol) was refluxed for 68 h. The same amount of lead oxide was added every 12 h. Subsequently, the suspension was filtered through *Speedex*. The filtrate was evaporated to dryness. The residue was chromatographed over silica gel (110 g) with CH₂Cl₂, saturated with anh. NH₃: 2.9 g (65.8%) of 9a, m.p. 164–166° (from i-PrOH). IR (KBr): 3458, 1645, 1495. ¹H-NMR (80 MHz, (D₆)DMSO): 2.13 (s. CH₃C); 2.64 (dd, $J_{gem} = J_{vic} = 10$, H–C(1) or H–C(7)); 2.93 (s. CH₃N); 3.12 (dd, $J_{gem} = 10$, $J_{vic} = 6$, H–C(1) or H–C(7)); 3.33 (dd, $J_{gem} = 12$, $J_{vic} = 1.5$, H–C(1) or H–C(7)); 3.63 (dd, $J_{gem} = 12$, $J_{vic} = 6$, H–C(1) or H–C(7)); 4.84 (m, $\Sigma J \approx 24$, H–C(7a)); 6.45 (s, H–C(5)); 7.41 (s, 1 arom. H–C); 11.72 (br. m, HN). MS: 254 (27, M^+), 213 (100), 166 (21), 128 (31), 115 (29), 108 (28), 73 (17), 55 (14), 45 (21), 28 (45). Anal. calc. for C₁₀H₁₄N₄S₂ (254.37): C 47.22, H 5.55, N 22.03; found: C 47.21, H 5.61, N 21.71.

b) From 8a. Under essentially the same conditions as described under a), 500 mg (1.73 mmol) of 8a yielded 306 mg (69.6%) of 9a, m.p. 165–167° (from 2-propanol), according to all spectroscopic data identical with 9a described under a).

17. 5α -[p-(Dimethylamino)phenyl]-7.7a α -dihydro-3-(methylimino)-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9b). a) From 7b. A solution of 7b (1.05 g, 3.2 mmol), 2-chloro-1-methylpyridinium iodide (981 mg, 3.8 mmol), and Et₃N (777 mg, 7.7 mmol) in MeCN (30 ml) was refluxed for 16 h. The mixture was evaporated and the residue treated with Et₂O (30 ml) and Na₂CO₃ (10%; 15 ml). The resulting org. phase was extracted with H₂O (10 × 15 ml) and then evaporated. Bulb-to-bulb distillation of the residue at 185–190°/0.09 Torr afforded 846 mg (90.1%) of 9b as a viscous yellowish oil. IR (film): 1644, 1612, 1563, 1521, 840, 816. ¹H-NMR (80 MHz, CDCl₃): 2.96 (s, (CH₃)₂N); 3.14 (s, CH₃N); 2.89–3.76 (m, H₂C(1), H₂C(7)); 4.20 (m, $\Sigma J \approx 24$, H–C(7a)); 6.65– 6.87 (m (AA'), 2 arom. H); 7.27–7.53 (m (BB'), 2 arom. H). MS: 293 (23, M⁺), 252 (100), 164 (20), 152 (17), 147 (13), 98 (14), 45 (20). Anal. cale. for C₁₄H₁₉N₃S₂ (293.45): C 57.30, H 6.53, N 14.32, S 21.85; found: C 56.90, H 6.50, N 14.19, S 21.92.

¹⁰) The substance contains 1.64% of CHCl₃, although dried at 65° *i.v.* during 64 h.

b) From 8b. With 8b, the reaction was complete after 4 h of refluxing. Workup as above yielded 91% of 9b, b.p. 185–190°/0.1 Torr, according to ¹H-NMR identical with 9b described under a).

18. $7,7\alpha\alpha$ -Dihydro- 5α -(p-methoxyphenyl)-3-(methylimino)-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9c) and $7,7\alpha\alpha$ -Dihydro- 5β -(p-methoxyphenyl)-3-(methylimino)-trans-1H,3H,5H-thiazolo[3,4-c]thiazole (10c) from 8c. A solution of 8c (3.22 g, 10.2 mmol), 2-chloro-1-methylpyridinium iodide (3.28 g, 12.3 mmol), and Et₃N (2.5 g, 24.6 mmol) in MeCN (40 ml) was refluxed for 5 h. After workup as described under 17, the crude product was chromatographed over silica gel (140 g). Upon elution with Et₂O, 9c (1.48 g, 51.5%), crystallized from MeOH as fumarate, m.p. 163–165°, and 10c (1.08 g, 37.6%), m.p. 121–122° (from Et₂O/petroleum ether), were isolated.

Data of 9c-fumarate: 1R (KBr): 2480, 1707, 1639, 1582, 1512, 1418, 1174, 1029, 825. ¹H-NMR (80 MHz, (D₆)DMSO): 2.74 (*dd*, $J_{gem} = J_{vic} = 10$, H–C(1) or H–C(7)); 2.98 (*s*, CH₃N); 3.18 (*dd*, $J_{gem} = 10$, $J_{vic} = 5.5$, H–C(1) or H–C(7)); 3.33 (*dd*, $J_{gem} = 10$, $J_{vic} = 1.5$, H–C(1) or H–C(7)); 3.64 (*dd*, $J_{gem} = 10$, $J_{vic} = 6.5$, H–C(1) or H–C(7)); 3.74 (*s*, CH₃O); 4.29 (*m*, $\Sigma J \approx 24$, H–C(7a)); 6.44 (*s*, H–C(5)); 6.62 (*s*, 3 olef. H); 6.75–6.96 (*m* (*AA'*), 2 arom. H); 7.16–7.40 (*m* (*BB'*), 2 arom. H). MS: 280 (85, M^+), 239 (100), 192 (28), 175 (21), 151 (67), 134 (73), 116 (30), 98 (87), 73 (32), 45 (80), 27 (62). Anal. calc. for C₁₃H₁₆N₂OS₂·1.5 C₄H₄O₄ (454.51): C 50.21, H 4.88, N 6.16, S 14.11; found: C 50.27, H 4.90, N 6.10, S 14.01.

Data of 10c: IR (KBr): 2770, 1653, 1610, 1584, 1512, 1250, 1173, 1027, 840, 799. ¹H-NMR (80 MHz, CDCl₃): 2.82 (s, CH₃N); 2.71–3.24 (m, H₂C(1), H₂C(7)); 3.84 (s, CH₃O); 4.48 (m, $\Sigma J \approx 31$, H–C(7a)); 5.54 (s, H–C(5)); 6.73–7.0 (m (AA'), 2 arom. H); 7.12–7.34 (m (BB'), 2 arom. H). MS: 280 (87, M^+), 239 (100), 192 (33), 175 (22), 151 (82), 134 (78), 121 (23), 106 (33), 91 (18), 73 (33), 45 (38), 41 (25), 38 (22), 28 (17). Anal. calc. for C₁₃H₁₆N₂OS₂ (280.40): C 55.69, H 5.75, N 9.99, S 22.87; found: C 55.94, H 5.82, N 9.90, S 22.77.

19. 7,7 $\alpha\alpha$ -Dihydro-3-(methylimino)-5 α -phenyl-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9d) and 7,7 $\alpha\alpha$ -dihydro-3-(methylimino)-5 β -phenyl-trans-1H,3H,5H-thiazolo[3,4-c]thiazole (10d). a) From 7d. The mixture of 7d (2.54 g, 8.93 mmol), Ph₃P (4.68 g, 17.8 mmol), Et₃N (1.9 g, 18.8 mmol), CCl₄ (3.43 g, 22.3 mmol), and CH₂Cl₂ (50 ml) was heated under reflux for 20 h. After cooling to r.t. and adding of Et₂O (100 ml), the mixture was treated with 3N HCl (50 ml). After stirring for 30 min, the clear acidic phase was separated. The org. phase was extracted with H₂O (2 × 25 ml). The combined H₂O-phases were adjusted to pH 9 by careful addition of calcined Na₂CO₃ (14 g). The bases were extracted with CH₂Cl₂. After washing with H₂O and brine, the solution was evaporated. The crude product yielded, after chromatography with CH₂Cl₂/MeOH 98:2 over silica gel (120 g), 1.38 g (61.7%) of 9d, m.p. 110–111° (from CH₂Cl₂/Et₂O), and 282 mg (12.6%) of 10d, m.p. 124–126° (from Et₂O).

Data of 9d: IR (KBr): 3427, 3267, 2990, 2932, 2765, 1644, 1494, 743, 717, 686. ¹H-NMR (400 MHz, CDCl₃): 2.94 (dd, $J_{gem} = J_{vic} = 10$, H–C(1) or H–C(7)); 3.08 (dd, $J_{gem} = 10$, $J_{vic} = 5.5$, H–C(1) or H–C(7)); 3.11 (s, CH₃N); 3.19 (dd, $J_{gem} = 12$, $J_{vic} = 1$, H–C(1) or H–C(7)); 3.62 (dd, $J_{gem} = 12$, $J_{vic} = 6$, H–C(1) or H–C(7)); 4.21 (m, $\Sigma J \approx 25$, H–C(7a)); 6.67 (s, H–C(5)); 7.21–7.48 (m, 5 arom. H). MS: 250 (19, M^+), 209 (100), 162 (18), 145 (10), 121 (21), 104 (36), 77 (21), 55 (9), 45 (14). Anal. calc. for C₁₂H₁₄N₂S₂ (250.38): C 57.57, H 5.64, N 11.19, S 25.61; found: C 57.42, H 5.66, N 11.13, S 25.71.

Data of **10d**: IR (KBr): 3410, 3363, 2778, 1656, 1493, 694. ¹H-NMR (80 MHz, CDCl₃): 2.73–3.24 (*m*, H₂C(1), H₂C(7)); 2.83 (*s*, CH₃N); 4.48 (*m*, ΣJ = 32, H–C(7a)); 5.55 (*s*, H–C(5)); 7.13–7.41 (*m*, 5 arom. H). MS: 250 (34, *M*⁺), 209 (100), 162 (13), 121 (14), 104 (18), 73 (12), 45 (13). Anal. calc. for C₁₂H₁₄N₂S₂ (250.38): C 57.57, H 5.64, N 11.19, S 25.61; found: C 57.46, H 5.68, N 11.10, S 25.56.

b) From 8d. Treatment of 8d (1.50 g, 5.26 mmol) with Ph_3P (2.76 g, 10.5 mmol), Et_3N (1.12 g, 11.1 mmol), and CCl_4 (2.02 g, 13.1 mmol) and workup as described under *a*) led to 9d (0.1 g, 7.6%), m.p. 110–111° (from CH_2Cl/Et_2O), and 10d (1.0 g, 76.2%), m.p. 124–126°.

20. 5α -(p-Chlorophenyl)-7,7 α -dihydro-3-(methylimino)-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9e) from 7e. Phosgene (460 mg, 4.65 mmol), dissolved in toluene (2.3 ml) was added at r.t. to a solution of 7e (1.06 g, 3.32 mmol) in THF (10 ml). After 20 min, the stirred mixture was refluxed for 45 min. Cooled again to r.t., it was treated dropwise with Et₃N (672 mg, 6.64 mmol) in THF (3 ml). After 30 min of refluxing, the solvent was removed under reduced pressure. The residue was dissolved in CH₂Cl₂, washed with brine (4 × 10 ml), and evaporated. The crude product was purified by filtration through silica gel with CH₂Cl₂/MeOH 99.5:0.5 to furnish 9e (707 mg, 74.7%). The compound crystallized as fumarate, m.p. 150–152° (from i-PrOH). IR (KBr): 3419, 2795, 2470, 1693, 1633, 1491, 1415, 1270, 1218, 840. ¹H-NMR (80 MHz, (D₆)DMSO): 2.74 (dd, $J_{gem} = J_{vic} = 10$, H–C(1) or H–C(7)); 2.95 (s, CH₃N); 3.21 (dd, $J_{gem} = 10$, $J_{vic} = 6$, H–C(1) or H–C(7)); 3.40 (dd, $J_{gem} = 12$, $J_{vic} = 1.5$, H–C(1) or H–C(7)); 3.66 (dd. $J_{gem} = 12$, $J_{vic} = 6$, H–C(1) or H–C(7)); 4.29 (m, $ZJ \approx 24$, H–C(7a)); 6.49 (s, H–C(5)); 6.62 (s, 3 olef. H); 7.4 (s, 4 arom. H). Anal. calc. for C₁₂H₁₃ClN₂S₂·1.5 C₄H₄O₄ (458.93): C 47.11, H 4.17, Cl 7.73, N 6.10, S 13.97; found: C 46.93, H 4.07, Cl 7.87, N 5.98, S 14.13. 21. $5\alpha - (p-Chlorophenyl) - 7,7\alpha\alpha - dihydro-3 - (methylimino) - cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9e) and 5\beta - (p-Chlorophenyl) - 7,7\alpha\alpha - dihydro-3 - (methylimino) - trans - 1H,3H,5H-thiazolo[3,4-c]thiazole (10e) from 8e. The mixture of 8e (3.09 g, 9.68 mmol), 2-chloro-1-methylpyridinium iodide (3.01 g, 11.62 mmol), Et₃N (2.35 g, 23.24 mmol), and MeCN (40 ml) was refluxed for 4 h. After workup as described under 17, the residue (2.95 g) was chromatographed over silica gel (140 g) with Et₂O to yield 9e (226 mg, 5.1%), characterized as crystalline fumarate, m.p. 149–151°, as described under 20, and 10e (2.1 g, 76.3%), m.p. 133–135° (from EtOH).$

Data of **10e**: IR (KBr): 3416, 2925, 2865, 1649, 1592, 1581, 1488, 846, 827. ¹H-NMR (270 MHz, CDCl₃): 2.83 (*s*, CH₃N); 2.88 (*dd*, $J_{gem} = 10$, $J_{vic} = 4.5$, H–C(1) or H–C(7)); 3.07 (*dd*, $J_{gem} = J_{vic} = 10.5$, H–C(1) or H–C(7)); 3.0–3.1 (*m*, 2H–C(1) or 2H–C(7)); 4.49 (*m*, $\Sigma J = 32.5$, H–C(7a)); 5.51 (*s*, H–C(5)); 7.22–7.33 (*m*, 4 arom. H). MS: 284 (34, M^+), 245 (41), 243 (100), 196 (12), 155 (14), 138 (14), 89 (12), 73 (18), 45 (23), 41 (17), 27 (7). Anal. calc. for C₁₂H₁₃ClN₂S₂ (284.82): C 50.60, H 4.60, Cl 12.45, N 9.84, S 22.51; found: C 50.80, H 4.99, Cl 12.12, N 9.51, S 21.97¹¹).

22. $7.7\alpha\alpha$ -Dihydro-3-(methylimino)-5 α -(p-nitrophenyl)-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (9f) and 7,7 $\alpha\alpha$ -Dihydro-3-(methylimino)-5 β -(p-nitrophenyl)-trans-1H,3H,5H-thiazolo[3,4-c]thiazole (10f). A mixture of 7f (14.8 g, 45 mmol), 2-chloro-1-methylpyridinium iodide (13.8 g, 54 mmol), anh. pulverized Na₂CO₃ (5.7 g, 54 mmol), and MeCN (450 ml) was refluxed for 24 h. After removal of the solvent under reduced pressure, CHCl₃ (500 ml) and H₂O (100 ml) were added to the residue. The org. phase was washed with H₂O and evaporated. The crude product was chromatographed with Et₂O over silica gel (1.4 kg) and yielded 9f (3.15 g, 23.7%), m.p. 119-121° (from CH₂Cl₂/Et₂O), and 10f (7.5 g, 56.5%), m.p. 199-201° (from CH₂Cl₂).

Data of 9f: IR (KBr): 1640, 1603, 1515, 1346, 815. ¹H-NMR (80 MHz, (D₆)DMSO): 2.82 (dd, $J_{gem} = J_{vic} = 10$, H-C(1) or H-C(7); 3.03 (s, CH_3N); 3.28 (dd, $J_{gem} = 10$, $J_{vic} = 5.8$, H-C(1) or H-C(7); 3.44 (dd, $J_{gem} = 11.5$, $J_{vic} = 2$, H-C(1) or H-C(7); 3.76 (dd, $J_{gem} = 11.5$, $J_{vic} = 6.5$, H-C(1) or H-C(7); 4.48 (m, $\Sigma J = 24$, H-C(7a)); 6.68 (s, H-C(5)); 7.6–7.9 (m (AA'), 2 arom. H); 8.1–8.4 (m (BB'), 2 arom. H). MS: 295 (30, M^+), 254 (100), 208 (16), 124 (7), 45 (7), 28 (24). Anal. calc. for $C_{12}H_{13}N_3O_2S_2$ (295.38): C 48.80, H 4.44, N 14.23, S 21.71; found: C 48.89, H 4.45, N 14.05, S 21.59.

Data of 10f: IR (KBr): 1644, 1608, 1597, 1525, 1489, 1346, 824. ¹H-NMR (80 MHz, (D₆)DMSO): 2.68 (*s*, CH₃N): 2.97–3.46 (*m*, 2 CH₂); 4.49 (*m*, $\Sigma J \approx 31$, H–C(7a)); 5.64 (*s*, H–C(5)); 7.6–7.8 (*m* (AA'), 2 arom. H); 8.08–8.4 (*m* (BB'), 2 arom. H). MS: 295 (68, M⁺), 254 (100), 224 (5), 208 (20), 175 (8), 129 (12), 73 (16), 55 (15), 45 (14), 28 (32). Anal. calc. for C₁₂H₁₃N₃O₂S₂ (295.38): C 48.80, H 4.44, N 14.23, S 21.71; found: C 48.83, H 4.46, N 14.09, S 21.56.

23. 7,7*a*-Dihydro-3-(methylimino)-cis-1H,3H,5H-thiazolo[3,4-c]thiazole (**9g**). The mixture of **7g** (313 mg, 1.5 mmol), 2-chloro-1-methylpyridinium iodide (575 mg, 2.25 mmol), Et₃N (455 mg, 4.5 mmol), and MeCN (15 ml) was refluxed for 2.5 h. After addition of DMF (10 ml), the MeCN was removed by distillation, and the resulting DMF solution was stirred at 120° for 3 h. The solvent was then distilled off under reduced pressure. The CH₂Cl₂ solution of the residue was washed with Na₂CO₃ (10%), brine, and H₂O. After evaporation of the solvent, the crude product (207 mg) was chromatographed with Et₂O over silica gel (21 g). The resulting **9g** was crystallized as fumarate salt (214 mg, 40.9%), m.p. 131–133° (EtOH). IR (KBr): 3200–2400 (br.), 1697, 1653, 1546, 1450, 1283, 1255. ¹H-NMR (80 MHz, (D₆)DMSO): 2.60 (*dd*, $J_{genn} = J_{vic} = 10$, H–C(1) or H–C(7)); 2.97 (*s*, CH₃N); 3.08 (*dd*, $J_{gem} = 10$, $J_{vic} = 6$, H–C(1) or H–C(7)); 4.19 (*m*, $\Sigma J = 24.5$, H–C(7a)); 4.14, 5.04 (2*d* (*AB*), J = 9.5, H₂C(5)); 6.70 (*s*, 3 olef. H); 12.1 (br. *s*, 3 HOOC). MS: 174 (39, M^+), 133 (100), 116 (7), 98 (27), 87 (13), 69 (13), 55 (23), 45 (13), 41 (8), 27 (8). Anal. cale. for C₆H₁₀N₂S₂·1.5 C₄H₄O₄ (348.39): C 41.37, H 4.63, N 8.04, S 18.40; found: C 41.36, H 4.51, N 8.07, S 18.45.

24. I-(1,3-Dithian-5-yl)-3-methylcarbodiimide (11) and I-(1,3-Dithian-5-yl)-3-methylurea. The mixture of 7g (1.0 g, 5 mmol), 2-chloro-1-methylpyridinium iodide (1.53 g, 6 mmol), Et₃N (1.21 g, 12 mmol), and CHCl₃ (10 ml) was refluxed for 23 h. The residue obtained after filtration and evaporation of the mixture was chromatographed with CHCl₃ over silica gel (105 g) and yielded crude 11 (45 mg, 5.1%) and the corresponding urea (615 mg, 63.9% crude product; 527 mg, 54.8% crystalline product), m.p. 231–233° (from MeOH).

Data of 11: IR (film): 2186, 2105. ¹H-NMR (80 MHz, CDCl₃): 2.91 (*dd*, $J_{gen} = 14$, J_{vic} 7.5, H–C(4), H–C(6)); 3.04 (*s*, CH₃N); 3.10 (*dd*, $J_{gen} = 14$, $J_{vic} = 4$, H–C(4), H–C(6)); 3.49, 4.15 (2*d* (*AB*), J = 14, H₂C(2)); 4.00 (*m*, $\Sigma J \approx 25$, H–C(7a)).

Data of I-(1,3-Dithian-5-yl)-3-methylurea: IR (KBr): 3348, 3296, 1626, 1586, 1527. ¹H-NMR (80 MHz, (D₆)DMSO): 2.55 (d, J = 4.5, CH₃N); 2.60 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, $J_{gem} = 14$, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{gem} = 14, $J_{vic} = 7.5$, H–C(4), H–C(6)); 2.93 (dd, J_{vic} = 7.5, H–C(6)); 2.93 (dd, J_{vic} = 7.5, H–C(6)); 2.93 (dd, J_{vic} = 7.5, H–C(7)); 2.93

¹¹) The substance holds tightly small amounts of EtOH.

 $J_{\text{vic}} = 2.5, \text{H}-\text{C}(4), \text{H}-\text{C}(6)$; 3.83 (*m*, $\Sigma J \approx 30, \text{H}-\text{C}(5)$); 5.81–6.30 (*m*, 2HN). MS: 192 (8, M^+), 118 (11), 103 (12), 75 (100), 61 (12), 58 (15), 43 (49), 30 (7). Anal. calc. for C₆H₁₂N₂OS₂ (192.30): C 37.48, H 6.29, N 14.57, S 33.34; found: C 37.55, H 6.44, N 14.51, S 33.04.

25. 7,7 α -Dihydro-5 α -phenyl-cis-1H,3H,5H-thiazolo[3,4-c]thiazol-3-one (12) and 7,7 α -Dihydro-5 β -phenyl-trans-1H,3H,5H-thiazolo[3,4-c]thiazol-3-one (13). a) From 6d ·HCl with Phosgene. A suspension of 6d ·HCl (248 mg, 1 mmol) in toluene (10 ml) was refluxed and 5 times (at intervals of 30 min) treated with phosgene (198 mg, 2 mmol) in toluene (1 ml). After further 15 h at r.t., the solvent was removed under reduced pressure. Chromatography of the residue with CH₂Cl₂ over silica gel yielded 12 (32.4 mg, 13.7%), b.p. 150–155°/0.04 Torr, and 13 (147.4 mg, 62.1%), m.p. 155–157° (from CH₂Cl₂/Et₂O).

Data of **12**: IR (film): 1679, 1601, 1584, 1493, 1175, 754, 700. ¹H-NMR (90 MHz, CDCl₃): 3.02 (*dd*, $J_{gem} = J_{vic} = 10$, H–C(1) or H–C(7)); 3.14 (*dd*, $J_{gem} = 10$, $J_{vic} = 6.5$, H–C(1) or H–C(7)); 3.20 (*dd*, $J_{gem} = 12$, $J_{vic} = 2.5$, H–C(1) or H–C(7)); 3.20 (*dd*, $J_{gem} = 12$, $J_{vic} = 7.5$, H–C(1) or H–C(7)); 4.35 (*m*, $\Sigma J = 26$, H–C(7a)); 6.42 (*s*, H–C(5)); 7.28–7.54 (*m*, 5 arom. H). MS: 237 (100, M^+), 236 (5), 209 (6), 196 (63), 162 (24), 132 (34), 122 (47), 121 (36), 117 (7), 104 (40), 103 (7), 89 (10), 77 (32), 73 (12), 51 (20), 45 (26), 39 (14), 27 (9). Anal. calc. for C₁₁H₁₁NOS₂ (237.34): C 55.67, H 4.67, N 5.90; found: C 55.88, H 4.72, N 5.79.

Data of 13: IR (KBr): 1684, 1683, 1599, 1496, 753, 701. ¹H-NMR (80 MHz, CDCl₃): 2.90 (dd, $J_{gem} = 11$, $J_{vic} = 5$, H–C(1) or H–C(7)); 3.19 (dd, $J_{gem} = 10$, $J_{vic} = 6$, H–C(1) or H–C(7)); 3.21 (dd, $J_{gem} = J_{vic} = 11$, H–C(1) or H–C(7)); 3.45 (dd, $J_{gem} = J_{vic} = 10$, H–C(1) or H–C(7)); 4.86 (m, $\Sigma J \approx 32$, H–C(7a)); 5.23 (s, H–C(5)); 7.25–7.48 (m, 5 arom. H). MS: 237 (100, M^+), 209 (8), 196 (48), 162 (36), 160 (5), 132 (30), 122 (78), 121 (41), 117 (6), 104 (39), 103 (6), 89 (11), 77 (31), 73 (17), 69 (9), 59 (13), 45 (24), 39 (17), 27 (10).

b) From 6d \cdot HCl with Trichloromethyl Chloroformate. To a mixture of 6d \cdot HCl (248 mg, 1 mmol), Et₃N (213 mg, 2.1 mmol), and MeCN (10 ml), trichloromethyl chloroformate (139 mg, 0.7 mmol) was added under stirring at r.t. After 24 h, the solvent was evaporated and the residue dissolved in CH₂Cl₂ and washed with H₂O. The crude product (208 mg, 87.5%) obtained upon evaporation of CH₂Cl₂ was characterized by ¹H-NMR (80 MHz, CDCl₃) and shown to be a 6:1 mixture of 12 and 13.

26. 7,7a-Dihydro-cis-1H,3H,5H-thiazolo[3,4-c]thiazol-3-one (15). A mixture of 5g (3.43 g, 20 mmol), Et₃N (8.1 g, 80 mmol), trichloromethyl chloroformate (5.94 g, 30 mmol), and MeCN (100 ml) was refluxed for 5 h. The residue obtained upon evaporation of the solvent was refluxed with diglyme (100 ml) for 48 h. After removal of the solvent under reduced pressure, the material was dissolved in CH₂Cl₂ and washed with brine and H₂O. The crude product from the org. layer was purified by chromatography over silica gel with Et₂O and yielded, after bulb-to-bulb distillation, 15 (750 mg, 23.3%), b.p. 105-110°/0.03 Torr. IR (film): 1675. ¹H-NMR (80 MHz, CDCl₃): 2.83 (dd, $J_{gem} = J_{vic} 10$, H-C(1) or H-C(7)); 3.05 (dd, $J_{gem} = 10$, $J_{vic} = 6$, H-C(1) or H-C(7)); 3.23 (dd, $J_{gem} = 11.5$, $J_{vic} = 2.5$, H-C(1) or H-C(7)); 3.68 (dd, $J_{gem} = 11.5$, $J_{vic} 7.5$, H-C(1) or H-C(7)); 4.14 (m, $\Sigma J = 26$ H-C(7a)); 4.04, 4.96 (2d, J = 9.0, H₂C(5)). MS: 161 (100, M^+), 120 (10), 115 (35), 86 (8), 72 (8), 60 (20), 55 (51), 54 (10), 46 (18), 45 (26), 41 (20), 39 (9), 29 (8). Anal. calc. for C₅H₇NOS₂ (161.24): C 37.25, H 4.38, N 8.69, S 39.77; found: C 37.34, H 4.49, N 8.59, S 39.29.

27. Equilibration Experiments with 7 and 8. a) With Et_3N . Pure 7f and pure 8f were refluxed for 2 h in MeCN with an excess of Et_3N . After evaporation *i.v.*, the composition of the residues was estimated by TLC. In both cases a 7f/8f ratio of 3:7 was found. The compounds 7d, 7e, 8d, and 8e were not changed under the above conditions.

b) With $Et_3N \cdot HCl$. A mixture of **8d** (100 mg, 0.34 mmol), $Et_3N \cdot HCl$ (53.2 mg, 0.39 mmol), and MeCN (2 ml) was refluxed for 72 h. After the usual workup, 97.1 mg (97.1%) of **8d**, in every respect identical with an authentic sample, was reisolated.

c) With NaOMe. Pure 7d and pure 8d (60 mg, 0.2 mmol) were refluxed for 24 h with NaOMe (10.8 mg, 0.2 mmol). After the usual workup, mixtures of 7d and 8d (84%) were isolated. In both cases, a 7d/8d ratio of 2.5:7.5 was estimated by ¹H-NMR (90 MHz).

28. Equilibration Experiments with 9 and 10. a) With Strong Bases. Pure 9 or 10 or mixtures of both (0.1 or 0.2 mmol) were stirred under Ar with base (0.02 mmol or 0.04 mmol of NaOMe or sodium 2-methyl-2-butoxide (Na[OBu(Me)])) in DMSO (0.5 ml) at 20, 50, and 80° for 2 to 12 days. The reaction was monitored by TLC (comparison with authentic samples). After workup with H_2O/Et_2O or H_2O/CH_2Cl_2 , the crude products were obtained in almost quantitative yield. The 9/10 ratio was estimated by ¹H-NMR (80 or 90 MHz). The results are compiled in Table 4.

b) With $Et_3N \cdot HCl$. A mixture of **10d** (50.1 mg, 0.2 mmol), $Et_3N \cdot HCl$ (30.3 mg, 0.22 mmol), and MeCN (2 ml) was refluxed for 72 h, and 47.3 mg (94.5%) of **10d** contaminated with a small trace of **9d** were reisolated.

Туре	Educts [%]		Base	Temperature	Reaction	Products [%]	
	9 or/and	10		[°C]	[days]	9	10
d	-	100	NaOMe	20	2	95	5
	100		NaOMe	20	12	98	2
e	10	90	NaOMe	20	2	> 95	< 5
ſ	-	100	NaOMe	80	4	35	65
	-	100	Na[OBu(Me)]	20	4		100
	_	100	Na[OBu(Me)]	80	4	40	60
	100	-	Na[OBu(Me)]	80	4	100	

Table 4. Equilibration Experiments with 9 and 10

REFERENCES

- [1] A. Lüttringhaus & H. Prinzbach, Justus Liebigs Ann. Chem. 624, 79 (1959).
- [2] A. Williams & I.I. Ibrahim, Chem. Rev. 81, 589 (1981).
- [3] R. Appel, R. Kleinstück & K.D. Ziehn, Chem. Ber. 104, 1335 (1971).
- [4] H. Ulrich & A.A. Sayigh, Angew. Chem. 78, 761 (1966).
- [5] T. Shibanuma, M. Shiono & T. Mukaiyama, Chem. Lett. 1977, 575.
- [6] G.M. Sheldrick, University of Göttingen, SHELXT 3.0 (1981).
- [7] A. Thalen & G. Claeson, Arkiv Kem. 24, 463 (1965); Chem. Abstr. 63, 18061 (1965).
- [8] R. Paul, J. Menschik & B.L. Walworth (American Cyanamid Co.), Ger. Offen. 2804435 (17.8.1978).